Shroud-like coloration of linen by ultraviolet radiation

Paolo Di Lazzaro

Chief of research, ENEA

ENEA Research Centre, via E. Fermi 45, 00044 Frascati (Rome, Italy)

Introduction

In 1984, two organizers of the STURP (Shroud of Turin Research Project), Jackson and Jumper, along with Ercoline published a paper entitled "Correlation of image intensity on the Turin Shroud with the 3-D structure of a human body shape" [1]. In this long paper (26 pages!) that I consider one of the most important work published by STURP members, the authors describe in meticulous detail the creation of a gallery of images on linen fabrics using all the techniques potentially able to create a Shroud-like image. Note that this paper was published four years before the radiocarbon dating of the Shroud, and the authors, unaware that the cloth was woven in the Middle Ages, tested all the possible techniques, ancient and modern, and not only those potentially available to the alleged medieval forger.

A list of techniques tested in this article include:

- Direct contact (a statue and a person coloured by inks, or chemicals, or powders, then draped by a linen cloth);
- Thermal colouration (from bas reliefs heated in a furnace and placed in contact on both dry and wet linen);
- Visible light (faces covered with phosphorescent paints imaged on contoured sheets of photographic film);
- Electrostatic field;
- Vapourgraphy (ammonia vapours on plaster face diffused on linen);
- Artists (professional artists, certified forensic with documented experience in realistic monotone imagery shade a Shroud-like face on linen, first free hand, then with anchor points);
- Hybrid mechanisms (different combinations of two or more techniques among those mentioned).

Jackson, Jumper and Ercoline compared the results of the above attempts with the macroscopic and microscopic features of the Shroud image, and argued that none of techniques tested can simultaneously reproduce the main features, from the 3-D property to the coloration depth to the resolution of the spatial details. The conclusion was that the image on the Shroud of Turin is not the result of the work of a forger.

Thoughts decant for a few years, until 1990 when Jackson writes a paper entitled "Is the image on the Shroud due to a process heretofore unknown to modern science?" [2]. In this paper, Jackson notes the failure of all the hypotheses "naturalistic" and also those "fraudulent" (by a hypothetical forger) on the formation of the image on the Shroud. However, the image is there, observable and measurable, then it must have been produced somehow. According to Jackson, when known scientific phenomena and paradigm are not able to explain and create a Shroud-like image, we must look for a physical phenomenon ad hoc, not yet known to science. Jackson suggests the far ultraviolet radiation as a "physical" method suitable to obtain a Shroud-like coloration on linen. In fact, the fabric of the Shroud has undergone a process of selective aging. The cellulose of flax fibres, due to oxidation and other chemical processes that occur over centuries, undergo a change at the molecular level that turns them yellow, as it happens for the cellulose pages of ancient books. In the case
of the Shroud the aging process is more pronounced for the fibres which constitute the image, so that these are more yellow than fibres outside the image. Although the cause of this selective aging of the image fibres is unknown, Jackson thought that the radiation in the far ultraviolet could reproduce the same effect, also in relation to the gradient of the image, due to the absorption of radiation by the air, which is proportional to the distance between the body and Shroud. Obviously, the hypothesis of the radiation moves the attention on what and how produced the radiation, and Jackson explicitly states that it would be a unique phenomenon, never observed so far, and outside our knowledge.

The paper by Jackson provoked critical reactions from other STuRP members for several reasons, including the apparent abdication of Science in front of an "image impossible" to be replicated and the potential implications of a "miracle" about a hypothetical flash of radiation emitted from the body of the man who was wrapped in the Shroud. In addition, in 1990 intense radiation sources in the far ultraviolet were not available and it was difficult to prove whether such radiation was able to generate a Shroud-like coloration. Indeed, some experiments with laser irradiation of linens in the near ultraviolet gave negative results [3].

In the early 2000s the Excimer Laboratory at the Research Centre ENEA Frascati had laser sources that emit radiation pulses in both near ultraviolet and far ultraviolet, so we had the possibility to test if the hypothesis of Jackson was viable, or if his opponents were right that it was impossible colouring linen fabrics by ultraviolet radiation. Our results showed that Jackson was right. The radiation in the far ultraviolet is able to create a Shroud-like coloration on linen fabrics. And Jackson was right as well considering this radiative hypothesis outside current paradigm and known scientific phenomena, because the amount of radiation energy and the ultra-short pulse duration required to achieve a Shroud-like linen coloration cannot be produced by any known natural phenomenon.

Let me point out that our efforts have been focused on the complex photochemical phenomena in the linen cellulose that produce the coloration after irradiation, and we never addressed the theological and philosophical issues, that go well beyond our scientific expertise, to how it is possible generating these specific radiation pulses (note that ultraviolet is invisible to human eyes) at the time of the formation of the Shroud image. In other words, we have dealt with only about a topic that is within our expertise, namely the physicochemical interaction of radiation with cellulose, which is able to generate a linen coloration that has many features in common with the image on the Shroud. The not strictly scientific implications of our findings are left to scholars competent in theology, metaphysics and philosophy.

How and why ultraviolet radiation generates a Shroud-like coloration of linen?

A laser system is a device that emits collimated bursts of radiation, a form of energy that propagates at distance from the source. Just now, our Laboratory has thirty-five years experience of irradiation of various materials with ultraviolet radiation. The effect of these irradiations is always limited to the surface of the material, whether it be a metal, a plastic, a semiconductor or a fabric. The energy of the ultraviolet radiation impinging on an object is absorbed in the most superficial molecular layers, and then this energy changes the molecular structure only at the surface of the object. Ultraviolet radiation breaks the molecular bonds without heating the irradiated sample. Then, ultraviolet radiation and even more the far ultraviolet radiation is a good candidate to obtain three characteristics of the coloration of the shroud image, namely the superficiality, the low-temperature of the process and the capability to colour areas not in contact with the linen.

Since 2005, our laboratory has carried out a large number of irradiations of ultraviolet radiation on linen fabrics woven in the years between 1930 and 1950 that were never used, never washed with detergent, in order to avoid the presence of chemicals which may alter the optical properties of the tissue. “Irradiation” means sending laser pulses on the linen, which alter the chemical bonds of the linen cellulose itself, which in turn changes its surface properties and appearance. After numerous irradiations and with great difficulty we could find the right combination of laser parameters (pulse duration, intensity, energy density and number of
shots) that allows a Shroud-like coloration. We got a hue of colour, a coloration limited to the crown of threads, coloured next to not coloured fibres, the reduced fluorescence, the negativity of the image, the lack of fluorescence that are similar to those measured on the Shroud of Turin images by STuRP. The following photos show some images illustrative of the results obtained. More details and many other images can be found in references [4, 5, 6].

Based on our decades of experience of irradiations and interaction of radiation with many materials, this is the first time we have found a so narrow range of values to get the desired effect. In fact, during the irradiation of the linen fabric is sufficient to vary a few percent only one of the laser parameters mentioned above to not get any linen coloration. Amazing.

Reducing to practice

Obtaining a linen coloration by ultraviolet laser radiation that reproduces many of the microscopic complexities of the Shroud image may be a fascinating result, suggestive about the hypothesis of image formation, but it does not lead to definitive conclusions, as noted by some "sceptic" scholars. In principle, I agree with this observation. However, there are some consequences and implications of our results that
deserve to be highlighted and commented. A first implication is having obtained experimentally the precise amount of ultraviolet radiation capable of generating an accelerated aging of the fibres of the linen threads, especially if the radiation is associated with the presence of oxygen in the air. Based on these data we were able to study the proper long term conservation conditions of the Shroud. The results of this study are summarized in reference [7]. The comparison of our proposals with the technical characteristics of the reliquary where the Shroud is currently preserved, suggests that the present conservation conditions are optimal, although we recommend an additional prudential measure that consists of a systematic control of the amount of gas Radon present in the vicinity of the same reliquary.

A second important consequence of our results is that the modern linen fabrics coloured and aged with ultraviolet laser irradiations (that is, a colour on linen having a sub micrometer depth, the alternation of fibrils coloured and not coloured, the "right" hue and contrast) can be used as a test to prove the non-invasiveness of both chemical reagents and physical technologies potentially suitable to study the Shroud. In fact, after the application of the reagent or of the spectroscopic technique, if the microscope observation of linens coloured by laser shows a change of the coloured fibrils, it means that the technique is invasive and must not be used on the Shroud. Vice versa, if the microscopic observation post-treatment reveals no changes, the technique is non-invasive and could be used on the Shroud. We recently used our linen fabrics coloured by laser to check whether three equipment (the ENEA LIF system for measuring laser-induced fluorescence, the topological radar patented by ENEA and the system Avantes for measuring the absolute reflectance) are not invasive. After the test, we checked the linen fabric under the microscope and found the three systems have left intact our sub-micrometer linen coloration, so we could use them in the optical and non invasive study of the shroud of Arquata, a copy of the Shroud which dates back to 1653. The shroud of Arquata is interesting because it contains a double human image that was not made with pigments or dyes, or by scorching. These three technologies, complementary and synergic each other, allowed to establish the methods used to achieve these images and other stains, as detailed in reference [8].

Other studies

In addition to the experiments of Shroud-like linen coloration by laser irradiation, recently we faced the problem of the many invisible images that some scholars are able to highlight after a digital processing of the contrast and brightness of the photographs of the Shroud. Our results suggest that in some cases (the alleged letters, the alleged face on the back) they are subjective and illusory perceptions, possibly related to the psychological phenomena of Gestalt and pareidolia, which are well known to scholars of human perception and optical illusions [9]. Sometimes, our eye-brain system perceives what we expect to see based on our experience, or what we hope to see. These mechanisms are "automatic", in that they are especially rapid, non-conscious, mandatory and capacity-free. In other words, usually we are not aware when pareidolia deceives our perception.

Our results have been presented in detail in several articles published in international scientific journals of great impact, and therefore they are available to all scientists and scholars interested in checking/reproducing our results and maybe obtaining better ones. In the website of our Laboratory you may find the web page http://www.frascati.enea.it/fis/lac/excimer/sindone/sindone.html that collects all our experimental results, papers, publications, interviews and movies of Shroud-related studies in ENEA.

References

